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EXPERIMENTAL DETAILS

Particle Synthesis

The fluorescent silica rod-like particles were pre-
pared by a two-step procedure. In the first step,
we prepared monodisperse silica rods following a re-
ported procedure [Ref. [24] of the main text]. 30 g
of poly(vinylpyrrolidone) (PVP, Mn = 40.000, Sigma-
Aldrich) was dissolved in 300 ml of 1-pentanol (99 %,
Sigma-Aldrich) containing 30 ml of absolute ethanol
(Baker). After PVP was dissolved, 8.4 ml of ultrapure
water (18.2 MΩ), 2 ml of 0.18 M sodium citrate dihy-
drate (99 %, Sigma-Aldrich), and 6.75 ml of ammonia
aqueous solution (25 %, Merck) were added and the flask
was shaken. Afterwards, 3.0 ml of tetraethylorthosilicate
(TEOS, 98%, Sigma-Aldrich) was added. The mixture
was shaken and then allowed to react undisturbed for
24 h. The as-prepared silica rods were separated by cen-
trifuge and then washed with ethanol, water and ethanol,
respectively. To grow a fluorescent shell[Ref. [25] of the
main text], half of the as-prepared silica rods were dis-
persed into 150 ml ethanol containing 10 ml of water and
12 ml of ammonia aqueous solution (25 %). Then 5 ml of
a solution containing 0.8 ml TEOS, 25 mg of fluorescein
isothiocyanate (FITC, isomer I, 90%, Sigma-Aldrich),
and 37 µl of 3-aminopropyltriethoxysilane (APS, 99%,
Sigma-Aldrich) was added. The reaction was stirred
overnight. Afterwards, the silica rods were washed with
ethanol for three times. To grow a non-fluorescent shell,
a similar procedure was performed but without the ad-
dition of FITC and APS. The thickness of the shell was
adjusted by controlling the amount of added TEOS (0.5
- 2 ml). The as-prepared colloidal rods have a three-
layered structure: non-fluorescent silica core, fluorescent
shell (dye: FITC, ca. 30-50 nm) and non-fluorescent shell
(ca.100 nm).

In the second step, we modified the silica rods
with octadecyltrimethoxylsilane (OTMOS, 90 %, Sigma-
Aldrich) by an ultrasonic-assisted coating procedure [Ref.
[6] of the main text]. In brief, a solution of OT-
MOS, butylamine (BA, 99.5 %, Sigma-Aldrich) and dried
toluene (1:1:10 v/v/v) was prepared, and then 10 (wt.-

)% of dried silica rods was added to this solution. The
suspension was sonicated at 30∼55 ◦C for 4 h (Bran-
son 2250). Afterwards, the colloidal rods were washed
in turn with toluene, cyclohexane and cyclohexylchloride
(CHC, 98 %, Merck). Finally, the colloidal rods were
dispersed in deionized CHC for further use. The length
L and diameter D of the as-prepared rods were 2.29 µm
(6.0 %) and 0.60 µm (6.5 %), respectively, which cor-
responded to an aspect ratio 3.8. Between parentheses
is the polydispersity (standard deviation divided by the
mean). The rods were assumed to have the same sur-
face potential as spherical particles with the same sur-
face chemistry composition. The surface potential of the
latter was estimated by measuring pair correlation func-
tion and subsequently fitting to classical DLVO theory
[1]. The surface potential was estimated in this way to
be roughly -50 mV.

Electrical conductivity measurement

We estimated the screening length by measuring the
conductivity of the deionized solvent CHC with a Scien-
tifica 627 conductivity meter. For the calculation of the
ionic strength we made use of Waldens rule [2], which
states that the product of the limiting equivalent con-
ductance and the viscosity is a constant between dif-
ferent media, i.e. ΛEthanol

0 ηEthanol
0 = ΛCHC

0 ηCHC
0 . We

used literature values for the limiting equivalent conduc-
tance of HCl in ethanol [3] and the viscosity of 1.5675
mPa.s at 298.15 K for CHC [4]. The Debye screening
length can then be estimated by κ−1 =

√
8πλBc. Here,

λB = e2/(4εε0kBT ) is the Bjerrum length, and ε and
ε0 are the dielectric constant of the solvent and the per-
mittivity of vacuum. e is the elementary charge, kB is
Boltzmanns constant and T is the absolute temperature.
A final conductivity of ca. 180 pS/cm for particle-free
CHC corresponded to κ−1 of ca. 1.2 µm estimated with
the above formula.
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Sample Cell Fabrication

A wedge-shaped cell was constructed for our experi-
ments. The cell consisted of two thin glass slides (55×24
mm, No.1, Menzel-Gläser), which were coated in turn
with a fluorescent and a non-fluorescent silica layer. To
grow a thin fluorescent layer, the glass slides were im-
mersed into 150 ml ethanol containing 10 ml of water and
12 ml of ammonia aqueous solution (25 %). Then 5 ml of
a solution containing 0.4 ml TEOS, 15 mg of fluorescein
isothiocyanate (FITC, isomer I, 90%, Sigma-Aldrich),
and 20 µl of 3-aminopropyltriethoxysilane (APS, 99%,
Sigma-Aldrich) was added. The reaction was performed
for 24 h. Afterwards, the glass slides were intensively
washed with ethanol with the assistance of sonication.
To grow a non-fluorescent shell, a similar procedure was
performed but without the addition of FITC and APS.
Afterwards, the surfaces of the two glass slides were
grafted with the silane OTMOS. By doing this, we tried
to achieve the exact same surface chemistry of the wall as
compared to that of the colloidal rods. A 50 µm diameter
nickel alloy wire was used as a spacer, and put on one end
between the two slides. The two glass slides were then
fixed with UV-sensitive glue (Norland No. 68) and one
end was kept open for the filling with the suspension of
rods (Figure S1). This cell allowed us to study the sample
thickness up to a maximum of 50 µm. The measurement
of the slit width was performed by confocal fluorescence
imaging, and a conservative estimate of the uncertainty
is ±0.16µm. We determined that the refractive index
mismatch between sample and immersion-liquid did not
change the height significantly [5].

FIG. S1. Schematic illustration of rod-like particles confined
in a wedge-shaped cell

Sample Preparation

The sample suspension medium was CHC. The re-
ceived CHC (conductivity >1000 pS/cm) was deionized
by using molecular sieves (4Å, Sigma-Aldrich) and sub-
sequent neutral aluminium oxide (Sigma-Aldrich). Af-
ter purification, CHC had a conductivity around 180
pS/cm.The suspension volume fraction we used in all ex-

periments was 0.0026. The suspension of rods was pulled
into the cell by capillary force through the open end. Af-
ter the suspension had filled the whole cell, the open end
was sealed with the glue. The sample was equilibrated for
at least 1 hour at room temperature before observation.

Confocal Microscopy Measurements

The images and datasets were recorded with a laser
scanning confocal microscope (Leica TCS SP2 or Leica
TCS SP8, the latter was equipped with a 12 kHz res-
onant scanner). All images were taken in fluorescence
mode (63×NA 1.4, immersion liquid: ne = 1.5180, Le-
ica). The excitation wavelength was 488 nm. For the
acquisition of 2D x-y-t datasets, the scanning time used
for each frame was 0.657 s, achieved by scanning 512×512
pixels with a pixel size of 155 nm. The positional coor-
dinates of the rods were found from an averaged image
over the corresponding x-y-t dataset. A conservative es-
timate of the uncertainty in the center of mass of a rod
was less than 80 nm. For obtaining 3D x-y-z-t datasets,
the scanning time of each series was 0.27 s, achieved by
scanning 400×100×20 pixels with a pixel size of 115 nm
in x-y and 319 nm in z, from which we obtained centers
of mass and angular coordinates using a home-written
computer tracking code, as explained in more detail in
the following paper[Ref. 7 of the main text]. The un-
certainty in the orientations is estimated to be around
27(deg) [Ref. [6] and Refs 4, 6, 7 of the main text]. Each
3D dataset had more than 6000 particles.

CRYSTAL STRUCTURES

As we mentioned in the main text and summarized in
Fig. S2, Fig. S3 and Fig. S4, we analyzed the formed
crystal structure by confocal microscopy. The images are
obtained from x-y-z datasets by superposing the frames
over around 7∼ 10 s and projecting them in x-y plane.
The colors in the images show the positions of particles.
Red, green, yellow and cyan are in turn for the layers
from the bottom to the top.

PAIR CORRELATION FUNCTION

The pair correlation functions for monolayered region,
trilayered region and tetralayered region discussed in the
main text are given in Fig. S5. The pair correlation
function for bilayered region is shown in Fig. 2c in the
main text.



3

FIG. S2. Structure of bilayered crystal. a) The 2✷ phase,
which corresponds to Fig. 1c in the main text, shows a stag-
gered structure with the projected position of a particle in the
neighbouring layer situated in the geometric center of a prim-
itive unit cell, marked by the two dashed squares; b) The 2R
phase, which corresponds to Fig. 1d in main text and shows
a staggered rhombic structure with the projected position of
a particle in the neighbouring layer situated in the geometric
center of a primitive unit cell, marked by the dashed rhom-
bus; c) The 2△ phase, which corresponds to Fig. 1e in main
text. In this case, both a staggered triangular phase marked
by dashed hexagon, and the rhombic phase (Rc, see ref. 21 of
the main text) marked by the dashed rectangle were observed;
d) The 2△ phase, which corresponds to Fig. 1f in main text
and shows a staggered triangular structure.

IN-PLANE ANGLE DISTRIBUTION

Fig. S6 showed the projected angle distribution of the
rod orientations in x-y plane. The corresponding distri-
butions of the z components are shown in Fig. 3a in the
main text. The figures suggest that the rods have roughly
random orientations in the x-y plane. The dashed lines
are for a uniform distribution.

ORIENTATIONAL DISTRIBUTION

The orientational distribution of rods in trilayered re-
gion and tetralayered region mentioned in the main text
are given in Fig. S7. Meanwhile, we observed an obvious
difference in the orientations between the rods in the lay-
ers adjacent to the wall and the layers in the middle. As
expected, the rods in the former show higher tendency
to be parallel to the wall. However, this effect weakened
with increasing of the slit width until the insertion of new

FIG. S3. Structure of trilayered crystal. a) The 3✷ phase,
which corresponds to Fig. 1g in main text, shows a staggered
structure with the projected position of a particle in the neigh-
bouring layer situated in the geometric center of a primitive
unit cell, marked by the dashed square; b) The 3R phase,
which corresponds to Fig. 1h in the main text, shows a stag-
gered rhombic structure with the projected position of a parti-
cle in the neighbouring layer situated in the geometric center
of a primitive unit cell, marked by the dashed rhombus; c)
The 3△ phase, which corresponds to Fig. 1i in the main text.
In this case, we observed three different packing structures:
face centered cubic (FCC), marked by the dashed hexagons
(top-right), hexagonal close packing (HCP), marked by the
dashed hexagons (bottom-right), and the rhombic phase (Rc,
see ref. 21 of the main text), marked by the dashed rectangles.

layers.

ORDER PARAMETERS

The global m-fold bond-orientational order parameter
φm was defined as:

ψm =< 1
N

∑N

α=1
1
Nb

∑Nb

β=1 exp(imθα,β) >

(S1)

where the angular brackets indicate an ensemble aver-
age, N is the number of the particles, Nb is the number
of nearest neighbors of particle α, and θα,β is the an-
gle between a fixed reference axis and the bond joining
particle α with a neighboring particle β. Here, we cal-
culated Nb by choosing a cutoff which is based on the
position of the first minimum after the first peak in the
pair correlation function g(r).
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FIG. S4. Structure of tetralayered crystal. a) The 4✷ phase,
which shows a staggered structure with the projected posi-
tion of a particle in the neighbouring layer situated in the ge-
ometric center of a primitive unit cell, marked by the dashed
square; b) The 4R phase, which shows a staggered rhombic
structure with the projected position of a particle in the neigh-
bouring layer situated in the geometric center of a primitive
unit cell, marked by the dashed rhombus; c) The 4△ phase. In
this case, we observed both FCC and HCP. In the hexagon-
marked location, the three layers close to bottom formed a
HCP structure, but the three layers above the bottom layer
formed an FCC structure.

The orientational order parameter S was defined as:

S = 1
2 < 3cos2θ − 1 >

(S2)

where θ is the angle with respect to the z axis (perpen-
dicular to the wall), and the angular brackets denote the
ensemble average. S takes values form -0.5 to 1, where S
= -0.5 is for rods that all have orientations perpendicular
to the z axis, S = 0 for random orientations, and S = 1
for rods that are all perfectly aligned with the z axis.

ORIENTATIONAL CORRELATION FUNCTIONS

The spatial orientational correlation function was de-
fined as:

g2(rij) =< cos(2(θi − θj)) >

(S3)
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FIG. S5. Transitions in crystal lattice versus slit width. a-c)
Pair correlation functions in the monolayer regions (a), the
trilayer region (b) and the tetralayer region (c), respectively,
calculated from the averaged positions of the centers of mass
of the rods over 81.75 s.
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FIG. S6. The in-plane angular distributions of rods. a) sam-
ple 1△1 and b) sample 1△4.
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FIG. S7. Orientational distributions. A comparison of the
distributions of the z components of the orientations between
rods in the layers adjacent to the wall and rods in middle
layers. a) In the trilayer region and b) in the tetralayer re-
gion. The symbols ✷, R, and △ in the figures denote square,
rhombic and hexagonal lattices, respectively. Insets show the
corresponding rotational trajectories of a single rod.

where the angular brackets denote the ensemble average,
and θi,j are the angles between a fixed reference axis and
the orientations of particles i and j, which are separated
by a distance rij . The time-dependent orientational au-
tocorrelation function was defined as:

C2(t) =
1
2 <

1
N

∑N

i=1 3[ui(0) ·ui(t)]
2 − 1 >

(S4)

where N is the number of the particles in the system, ui

is the unit vector that defines the orientation of particle
i, and the angular brackets denote the ensemble average.
The C2(t) of rods in the bilayer region, trilayer region and
tetralayer region mentioned in the main text are given in
Fig. S8.
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FIG. S8. The time-dependent orientational auto-correlation
functions of rods. a,b) In the bilayer region, c) In the trilayer
region and d) in the tetralayer region. The symbols ✷, R, and
△ in the figures denote square, rhombic and hexagonal lat-
tices, respectively. The curves decay quickly to small positive
values illustrating that the rods quickly explore most but not
all of the orientational space.

CALCULATION MODEL

Though the interaction potential between two charged
spherical particles in suspension media is well described
by the Yukawa potential, the repulsive electrostatic part
of the Derjaguin-Landau-Verwey-Overbeek (DLVO) the-
ory, the interaction potential between two anisotropic
particles e.g. charged rods with short-ranged potential
is not analytically known [7]. As an approximation, a so-
called Yukawa segment model has been extensively used
to describe the interaction between two charged rods in
simulation and theory [Refs. 29-31 of the main text]. In
this model, one rod is divided into n equal segments, and
on each segment the amount of charge is equal to Q/n
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(Q = ze, denotes the total charge of a rod). For each
segment, a point-like Yukawa potential is then used. In
this model, the interaction between the pth rod and the
qth rod is thus given by a sum over all pairs of segments
lying on different rods (Fig. S9):

FIG. S9. Schematic model.

Upq(r) = U0

∑n

i,j=1
exp(−κrij)

κrij

(S5)

where the prefactor U0 is given by:

U0 = ( z
n
)2 e2κ

4πεε0
( exp(κa)1+κa

)2

(S6)

and the interrod segment distance is given as

rij = |rp − rq +updn(2i− 1−n)/2−uqdn(2j− 1−n)/2|

(S7)

dn is the distance between two neighboring segments. In
order to adjust the quadrupolar moment of this model
to that of a homogenously charged rod of length L and
charge Q, dn is given by:

dn = L/
√

(n+ 1)(n− 1)

(S8)

This is just an approximate model due to the absence
of correlations between counter ions and the correlation
between counter ions and charges belonging to different
segments, and is moreover only justified for a diluted and
weakly screened system [Refs. 29-31 of the main text].
However, our system has a large screening length and
shows large interrod distances (r/L > 2), and thus we
also expect this model to capture most of the physics and
hope that the deviations which go beyond the present pa-
per will not change our main conclusions. In addition,
because here we care more about a comparison of the

repulsive potentials between rods with different orienta-
tions than an absolute value of the potential, we believe
that this makes it less likely that deviations from a full
calculation will not influence our main conclusions.
Now the interaction potential between any two rods

with a center-center separation r can be calculated. As
in experimental observations the rods were restricted to
lattice sites and so two neighboring rods were kept at a
fixed separation r, as there were hardly measurable den-
sity differences. However, their rotational motion was
much less restricted. Therefore, the interaction potential
between two rods will vary depending on their orienta-
tions. To simplify the calculation, a reasonable method is
taking an average over all allowed orientations of the two
rods. In a crystal lattice, every rod will have the same
environment and be subject to the same constraints. If
one rod has m possible orientations, then the averaged
interaction is given by:

Upq,avg(r) =
1
m2

∑m
p,q=1 Upq(r,up,uq)

(S9)

Similarly, the interaction potentialW (h) between the pth

rod and the wall is described as:

Wp(h) =W0

∑N

l=1 exp(−κhl)

(S10)

where l denotes the l
th segment, and h denotes the sep-

aration between the center of mass of the segment and
the wall, and the prefactor W0 is given by [8]:

W0 = 4πεε0ϕw,effϕr,effa

(S11)

with ϕw, ϕr denote the effective surface potential of the
wall and the rod, respectively, and are expressed as:

ϕw,r,eff = 4kBT
e

tanh(
eϕw,p

4kBT
)

(S12)

This is then also averaged over orientations of the rods,
similarly to eq. (S9).

Wp,avg = 1
m

∑m

p=1Wp(h,up)

(S13)
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Calculation of total repulsive potential of one rod on
a perfect lattice confined between walls: For a single rod
on a lattice the most probable orientation is the one that
minimizes the potential energy of its interactions with
the other rods and with the walls. For a collection of N
rods, the total repulsive potential energy of the system
thus can be described as a sum of the repulsive potential
over N particles:

Utot =
∑N

p,q=1 p<q Upq,avg + 2 ∗∑N

p=1Wp,avg

(S14)

In a screened environment, one rod has an anisotropic
potential due to finite-size double layer. Moreover, in a
wedge-shaped confinement the rods possibly do not ex-
plore all orientations, so the total repulsive potential Utot

is orientation- (distribution) dependent. Therefore, by
finding the minimum Utot we can find the preferred ori-
entation distribution of the rods. Again, we assume that
every rod is in the same average environment (for exam-
ple in a perfect crystal), so to compare the total repulsive
potential Utot can be simplified to the averaged repulsive
potential Us over N rods, which is given by:

Us =
Utot

N
=

∑
N−1

2

q Upq,avg + 2 ∗ Up,avg

(S15)

Us is still orientation-(distribution) dependent. Because
the electrostatic potential decays dramatically with the
interrod distance as shown in Fig. S10, the contribution
from the second neighbors is 1∼2 orders of magnitude
lower than that from the nearest neighbors (See Fig.2c
in the maintext and Fig.S5 for the separation between a
rod and its neighbours). Therefore, we consider only the
first nearest neighbors for the calculation of Us.
The values of the parameters used in our calculations

Surface charge z = 239 e (Used in equation S9 and S13);
Screening length κ−1 = 1.2 µm; Segmental number n =
4; Effective surface potential of the wall (50 mV) (Used
in equation S13);
In the following, we first consider the dependence of

the potential energy of the rods on the orientational dis-
tribution using a distribution that is uniform within a
given angular range. Then, we calculate the energy using
the measured distribution obtained from our real space
measurement.
In Supplementary Fig. S11 and S12, we show that

the interaction potential between two rods or between a
wall and a rod is dependent on the orientations of the
rods, and those differences in energy range up to 1 kBT .
However, for a single rod, the effects of the repulsive po-
tential from the neighbouring rods and from the wall are
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FIG. S10. Interaction potential between two freely rotating
rods with random orientational distribution as a function of
interrod distance r.
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FIG. S11. Interaction potential between one freely rotated
rod in x-y-z space and another rod at a fixed angle θ from x-y
plane. r is fixed to 5.42 m.
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FIG. S12. Interaction potential between a wall and a rod with
a fixed angle from the x-y plane. a) Schematic model. The
curves at three different wall-wall separations are shown in b,
c, d). b) d = 8.8 µm; c) d = 11.9 µm; d) d = 15.0 µm.

opposite. The repulsive potential from the neighbouring
rods tends to drive the rod to be perpendicular to the
wall (Supplementary Fig. S11), but that from the walls
tends to drive the rod to be parallel to the wall (Fig.
S12). This implies that the preferred orientation for one
rod would be that direction, in which the rod has the
minimum sum Us of the two repulsive potentials. The
calculated results are shown in Fig. S13 for the hexago-
nal lattice in which each rod has six nearest neighbours.
Clearly, under strong confinement, the rods rotating only
in the x-y plane have the minimum Us, while under weak
confinement the rods taking an orientation perpendicular
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FIG. S13. The averaged potential energy Us in a confined hexagonal lattice as a function of slit width d. a) The schematic
model for the rod in confinement. θ1, θ2 are the two boundaries of the angular range that the rods are allowed to explore with
uniform probability. b) The comparison of Us between rods restricted to different angular ranges. Magnifications of region 1
(c), region 2 (d), and region 3 (e).

to the wall have the minimum Us. In the intermediate
confinement, there is no obvious interaction potential en-
ergy difference, so the rods can take any orientation with
equal probability. The results are in agreement with our
experimental observations. In experiments, the rods al-
ways assume a distribution that differs from uniform. To
reduce the error from this deviation, we also calculated
the Us by selecting orientations from the measured ori-
entational distribution and the results are shown in Fig.
4 in the main text.

In the following, we extend this model to bilayer re-
gion. Here, interactions of a given particle with one wall,
the neighbours lying in the same layer, and neighbours
lying in the second layer were considered. Similar to the
calculations in the monolayer region, we generated three
orientational distributions based on two angles θ1 and θ2
with the x-y plane, between which the rods are allowed to

freely rotate (see Supplementary Fig. S14a). The three
distributions are [0◦, 30◦], [0◦, 90◦] and [60◦, 90◦] and
describe rods that have preferred orientations parallel to
wall, totally random and perpendicular to the wall, re-
spectively. The results are shown in Supplementary Fig.
S14b-d and illustrate that in the whole range in which 2
✷ and 2R exist orientations parallel to the wall should
be preferred, whereas in the range of 2△ the rods should
prefer first to be parallel to the wall at small slit width,
then gradually to become randomly oriented with unre-
stricted rotation, and finally to orient perpendicular to
the wall at larger slit width until the insertion of a new
layer. This prediction exactly reproduces the sequence
that is observed in the experiments.
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FIG. S14. The averaged potential energy Us in a confined crystal lattice as a function of slit width d. a) The schematic model
for the rod in confinement. θ1, θ2 are the two boundaries of the angular range that the rods are allowed to explore with uniform
probability. b-d) The comparison of Us between rods restricted to different angular ranges in the region of 2✷ (b), 2R (c) and
2△.

LEGEND FOR SUPPLEMENTARY MOVIES

Supplementary Movie S1: Monolayered triangle
phase. This movie, corresponding to Fig. 1a in the main
text, shows a quasi-two-dimensional plastic crystal with
the rods showing strong tendency to freely rotate in x-y
plane. The movies is played at 10 times of real speed.

Supplementary Movie S2: Monolayered triangle
phase. This movie, corresponding to Fig. 1b in the main
text, shows a monolayered plastic crystal with the rods
tending to freely rotate in full three dimensions. The
movies is played at 10 times of real speed.

Supplementary Movie S3: Monolayered triangle
phase. This movie, corresponding to Fig. 1c in the
main text, shows a monolayered crystal with rods show-
ing strong tendency to have their orientations along the
direction which is perpendicular to the confining wall.
The movies is played at 10 times of real speed.

Supplementary Movie S4: Bilayered square phase.
This movie, corresponds to Fig. 1d in the main text,
shows a bilayered plastic crystal with square symmetry,
where the rods show weak tendency to freely rotate in x-y
plane. The movies is played at 10 times of real speed.

Supplementary Movie S5: Bilayered rhombic
phase. This movie, corresponds to Fig. 1e in the main

text, shows a bilayered plastic crystal with rhombic sym-
metry, where the rods show weak tendency to freely ro-
tate in x-y plane. The movies is played at 10 times of
real speed.

Supplementary Movie S6: Bilayered triangle
phase. This movie, corresponding to Fig. 1f in the main
text, shows a bilayered plastic crystal with trianglar sym-
metry, where the rods show weak tendency to freely ro-
tate in x-y plane. The movies is played at 10 times of
real speed.

Supplementary Movie S7: Bilayered triangle
phase. This movie, corresponding to Fig. 1g in the main
text, shows a bilayered crystal with trianglar symmetry,
where the rods show weak tendency to have their orien-
tations along the direction which is perpendicular to the
confining wall. The movies is played at 10 times of real
speed.

Supplementary Movie S8: Tetralayered square
phase. This movie shows a tetralayered plastic crystal
with square symmetry. The movies is played at 10 times
of real speed.

Supplementary Movie S9: Tetralayered triangular
phase. This movie shows a tetralayered plastic crystal
with trianglar symmetry. The movies is played at 10
times of real speed.
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